datasheetbank_Logo
データシート検索エンジンとフリーデータシート

HIP6003 データシートの表示(PDF) - Intersil

部品番号
コンポーネント説明
メーカー
HIP6003 Datasheet PDF : 12 Pages
1 2 3 4 5 6 7 8 9 10 Next Last
HIP6003
RT/OVP (Pin 15)
This pin is multiplexed, providing two functions. The first
function is oscillator switching frequency adjustment. By
placing a resistor (RT) from this pin to GND, the nominal
200KHz switching frequency is increased according to the
following equation:
FS 200kHz + R--5---T----(--1k---0----6--)
(RT to GND)
Conversely, connecting a pull-up resistor (RT) from this pin
to VCC reduces the switching frequency according to the
following equation:
FS 200kHz + R--4---T----(--1k---0----7--)
(RT to 12V)
The second function for this pin is to drive an external SCR
in the event of an overvoltage condition.
VSEN (Pin 16)
This pin is connected to the converters output voltage. The
PGOOD and OVP comparator circuits use this signal to
report output voltage status and for overvoltage protection.
Functional Description
Initialization
The HIP6003 automatically initializes upon receipt of power.
Special sequencing of the input supplies is not necessary.
The Power-On Reset (POR) function continually monitors
the input supply voltages. The POR monitors the bias
voltage at the VCC pin and the input voltage (VIN) on the
OCSET pin. The level on OCSET is equal to VIN less a fixed
voltage drop (see over-current protection). The POR function
initiates soft start operation after both input supply voltages
exceed their POR thresholds. For operation with a single
+12V power source, VIN and VCC are equivalent and the
+12V power source must exceed the rising VCC threshold
before POR initiates operation.
Soft Start
The POR function initiates the soft start sequence. An
internal 10µA current source charges an external capacitor
(CSS) on the SS pin to 4V. Soft start clamps the error
amplifier output (COMP pin) and reference input (+ terminal
of error amp) to the SS pin voltage. Figure 3 shows the soft
start interval with CSS = 0.1µF. Initially the clamp on the error
amplifier (COMP pin) controls the converter’s output voltage.
At t1 in Figure 3, the SS voltage reaches the valley of the
oscillator’s triangle wave. The oscillator’s triangular
waveform is compared to the ramping error amplifier voltage.
This generates PHASE pulses of increasing width that
charge the output capacitor(s). This interval of increasing
pulse width continues to t2. With sufficient output voltage,
the clamp on the reference input controls the output voltage.
This is the interval between t2 and t3 in Figure 3. At t3 the
SS voltage exceeds the DACOUT voltage and the output
voltage is in regulation. This method provides a rapid and
controlled output voltage rise. The PGOOD signal toggles
‘high’ when the output voltage (VSEN pin) is within ±5% of
DACOUT. The 2% hysteresis built into the power good
comparators prevents PGOOD oscillation due to nominal
output voltage ripple.
PGOOD
(2V/DIV)
0V
SOFT-START
(1V/DIV)
OUTPUT
VOLTAGE
(1V/DIV)
0V
0V
t1
t2
t3
TIME (5ms/DIV)
FIGURE 3. SOFT START INTERVAL
Over-Current Protection
The over-current function protects the converter from a
shorted output by using the upper MOSFETs on-resistance,
rDS(ON) to monitor the current. This method enhances the
converter’s efficiency and reduces cost by eliminating a
current sensing resistor.
The over-current function cycles the soft-start function in a
hiccup mode to provide fault protection. A resistor (ROCSET)
programs the over-current trip level. An internal 200µA current
sink develops a voltage across ROCSET that is referenced to
VIN. When the voltage across the upper MOSFET (also
referenced to VIN) exceeds the voltage across ROCSET, the
over-current function initiates a soft-start sequence. The soft-
start function discharges CSS with a 10µA current sink and
inhibits PWM operation. The soft-start function recharges
CSS, and PWM operation resumes with the error amplifier
clamped to the SS voltage. Should an overload occur while
recharging CSS, the soft start function inhibits PWM operation
while fully charging CSS to 4V to complete its cycle. Figure 4
shows this operation with an overload condition. Note that the
inductor current increases to over 15A during the CSS
charging interval and causes an over-current trip. The
5

Share Link: 

datasheetbank.com [ Privacy Policy ] [ Request Datasheet ] [ Contact Us ]