datasheetbank_Logo
データシート検索エンジンとフリーデータシート

ADP3190AJRUZ データシートの表示(PDF) - Analog Devices

部品番号
コンポーネント説明
メーカー
ADP3190AJRUZ Datasheet PDF : 28 Pages
1 2 3 4 5 6 7 8 9 10 Next Last
ADP3190
Figure 7. Typical Start-Up Waveforms
Channel 1: PWRGD, Channel 2: CSREF,
Channel 3: DELAY, Channel 4: COMP
CURRENT-LIMIT, SHORT-CIRCUIT, AND
LATCH-OFF PROTECTION
The ADP3190/ADP3190A compare a programmable current-
limit setpoint to the voltage from the output of the current sense
amplifier. The level of current limit is set with the resistor from
the ILIMIT pin to ground. During normal operation, the
voltage on ILIMIT is 3 V. The current through the external
resistor is internally scaled to give a current-limit threshold of
10.4 mV/μA. If the difference in voltage between CSREF and
CSCOMP rises above the current-limit threshold, the internal
current-limit amplifier controls the internal COMP voltage to
maintain the average output current at the limit.
After the limit is reached, the 3 V pull-up on the DELAY pin is
disconnected, and the external delay capacitor is discharged
through the external resistor. A comparator monitors the DELAY
voltage and shuts off the controller when the voltage drops below
1.8 V. The current-limit latch-off delay time is, therefore, set by the
RC time constant discharging from 3 V to 1.8 V. The Application
Information section discusses the selection of CDLY and RDLY.
Because the controller continues to cycle the phases during the
latch-off delay time, the controller returns to normal operation
if the short is removed before the 1.8 V threshold is reached.
The recovery characteristic depends on the state of PWRGD. If
the output voltage is within the PWRGD window, the controller
resumes normal operation. However, if a short circuit has
caused the output voltage to drop below the PWRGD threshold,
a soft start cycle is initiated.
The latch-off function can be reset by either removing and
reapplying VCC to the ADP3190/ADP3190A or by pulling the
EN pin low for a short time. To disable the short-circuit latch-
off function, the external resistor to ground should be left open,
and a high value (>1 MΩ) resistor should be connected from
DELAY to VCC.
This prevents the DELAY capacitor from discharging, so the
1.8 V threshold is never reached. The resistor has an impact on
the soft start time because the current through it adds to the
internal 20 μA current source.
During startup, when the output voltage is below 200 mV, a
secondary current limit is active. This is necessary because the
voltage swing of CSCOMP cannot go below ground. This
secondary current limit controls the internal COMP voltage
to the PWM comparators to 2 V. This limits the voltage drop
across the low-side MOSFETs through the current balance
circuitry.
An inherent per phase current limit protects individual phases,
if one or more phases stops functioning because of a faulty
component. This limit is based on the maximum normal
mode COMP voltage.
Figure 8. Overcurrent Latch-Off Waveforms
Channel 1: CSREF, Channel 2: DELAY,
Channel 3: COMP, Channel 4: Phase 1 Switch Node
DYNAMIC VID
The ADP3190/ADP3190A have the ability to dynamically
change the VID input while the controller is running. This
allows the output voltage to change while the supply is running
and supplying current to the load. This is commonly referred to
as VID on-the-fly (OTF). A VID OTF can occur under either
light or heavy load conditions. The processor signals the
controller by changing the VID inputs in multiple steps from the
start code to the finish code. This change can be positive or
negative.
When a VID input changes state, the ADP3190/ADP3190A
detect the change and ignore the DAC inputs for a minimum of
400 ns. This time prevents a false code due to logic skew while
the six VID inputs are changing. Additionally, the first VID
change initiates the PWRGD and crowbar blanking functions
for a minimum of 100 μs to prevent a false PWRGD or crowbar
event. Each VID change resets the internal timer.
Rev. 0 | Page 10 of 28

Share Link: 

datasheetbank.com [ Privacy Policy ] [ Request Datasheet ] [ Contact Us ]