STLC3055N
Application information
Table 11. External components @gain set = 0 (continued)
Name
Function
Formula
Typ. value
ZB(1)
Line impedance balancing
network
ZB = 50 ⋅ Zl
30 kΩ 1% @ Zl = 600 Ω
fo = 250 kHz
CCOMP AC feedback loop compensation
CCOMP = 1/(2π⋅fo⋅100⋅(RP))
120 pF 10% 10 V @ Rp = 50 Ω
CH
Trans-Hybrid Loss frequency
compensation
CH = CCOMP
120 pF 10% 10 V
RTTX(2)
Pulse metering cancellation
resistor
CTTX(2)
Pulse metering cancellation
capacitor
RLV Pulse metering level resistor
RTTX = 50Re (Zlttx+2Rp)
CTTX = 1/{50⋅2π⋅fttx[-
lm(Zlttx)]}
RLV = 63.3·103··α·VLOTTX
α = (|Zlttx + 2Rp|/|Zlttx|)
15 kΩ @Zlttx = 200 Ω real
100nF 10% 10V(3)
@ Zlttx = 200Ω real
16.2 kΩ @ VLOTTX = 170mVrms
CS
Pulse metering shaping
capacitor
CS = τ/(2⋅RLV)
100 nF 10% 10V
@ τ = 3.2 ms, RLV = 16.2 kΩ
CFL Pulse metering filter capacitor CFL = 2/(2π⋅fttx⋅RLV)
1.5 nF 10% 10 V
@fttx = 12 kHz RLV = 16.2 kΩ
1. In case Zs=Zl, ZA and ZB can be replaced by two resistors of same value: RA=RB=|Zs|.
2. Defining ZTTX as the impedance of RTTX in series with CTTX, RTTX and CTTX can also be calculated from the following
formula:
ZTTX=50*(Zlttx+2Rp).
3. In this case CTTX is just operating as a DC decoupling capacitor (fp=100 Hz).
Table 12. External components @gain set = 1
Name
Function
Formula
Typ. value
RS Protection resistance image
RS = 25 ⋅ (2Rp)
ZAC Two wire AC impedance
ZAC = 25 ⋅ (Zs - 2Rp)
ZA(1)
SLIC impedance balancing
network
ZA = 25 ⋅ Zs
ZB(1)
Line impedance balancing
network
ZB = 25 ⋅ Zl
fo = 250kHz
CCOMP AC feedback loop compensation
CCOMP = 2/(2π⋅fo⋅100⋅(RP))
CH
Trans-Hybrid Loss frequency
compensation
CH = CCOMP
RTTX(2)
Pulse metering cancellation
resistor
RTTX = 25Re (Zlttx+2Rp)
CTTX(2)
Pulse metering cancellation
capacitor
RLV Pulse metering level resistor
CTTX = 1/25⋅2π⋅fttx⋅[-lm(Zlttx)]
RLV = 31.7·103··α·VLOTTX
α = (|Zlttx + 2Rp|/|Zlttx|)
2.55 kΩ @ Rp = 50 Ω
12.5 kΩ 1% @ Zs = 600 Ω
15 kΩ 1% @ Zs = 600 Ω
15 kΩ 1% @ ZI = 600 Ω
220 pF 10% 10VL @ Rp = 50 Ω
220 pF 10% 10 V
7.5 kΩ @Zlttx = 200 Ω real
100 nF 10% 10 V(3)
@ Zlttx = 200 Ω real
16.2 kΩ @ VLOTTX = 340 mVrms
19/34