datasheetbank_Logo
búsqueda de Hoja de datos y gratuito Fichas de descarga

LT3757EDD-PBF Ver la hoja de datos (PDF) - Linear Technology

Número de pieza
componentes Descripción
fabricante
LT3757EDD-PBF
Linear
Linear Technology 
LT3757EDD-PBF Datasheet PDF : 36 Pages
First Prev 11 12 13 14 15 16 17 18 19 20 Next Last
LT3757/LT3757A
Applications Information
where VSN is the snubber capacitor voltage. A smaller
VSN results in a larger snubber loss. A reasonable VSN is
2 to 2.5 times of:
VOUT NP
NS
LLK is the leakage inductance of the primary winding, which
is usually specified in the transformer characteristics. LLK
can be obtained by measuring the primary inductance with
the secondary windings shorted. The snubber capacitor
value (CCN) can be determined using the following equation:
CCN
=
VSN
VSN RCN
f
where ∆VSN is the voltage ripple across CCN. A reasonable
∆VSN is 5% to 10% of VSN. The reverse voltage rating of
DSN should be higher than the sum of VSN and VIN(MAX).
Flyback Converter: Sense Resistor Selection
In a flyback converter, when the power switch is turned
on, the current flowing through the sense resistor
(ISENSE) is:
ISENSE = ILP
Set the sense voltage at ILP(PEAK) to be the minimum of
the SENSE current limit threshold with a 20% margin. The
sense resistor value can then be calculated to be:
RSENSE
=
80mV
ILP(PEAK )
Flyback Converter: Power MOSFET Selection
For the flyback configuration, the MOSFET is selected with
a VDC rating high enough to handle the maximum VIN, the
reflected secondary voltage and the voltage spike due to
the leakage inductance. Approximate the required MOSFET
VDC rating using:
BVDSS > VDS(PEAK)
where:
VDS(PEAK) = VIN(MAX) + VSN
The power dissipated by the MOSFET in a flyback con-
verter is:
PFET = I2M(RMS) RDS(ON) + 2 • V2DS(PEAK) IL(MAX)
CRSS f /1A
The first term in this equation represents the conduction
losses in the device, and the second term, the switching
loss. CRSS is the reverse transfer capacitance, which is
usually specified in the MOSFET characteristics.
From a known power dissipated in the power MOSFET, its
junction temperature can be obtained using the following
equation:
TJ = TA + PFET θJA = TA + PFET • (θJC + θCA)
TJ must not exceed the MOSFET maximum junction
temperature rating. It is recommended to measure the
MOSFET temperature in steady state to ensure that absolute
maximum ratings are not exceeded.
3757afd
20

Share Link: 

datasheetbank.com [ Privacy Policy ] [ Request Datasheet ] [ Contact Us ]