ISL8025, ISL8025A
PWM
PFM
PWM
CLOCK
16 CYCLES
PFM CURRENT LIMIT
IL
0
NOMINAL +1%
LOAD CURRENT
VOUT
NOMINAL
NOMINAL -1.5%
FIGURE 49. SKIP MODE OPERATION WAVEFORMS
Frequency Adjust
The frequency of operation is fixed at 1MHz when FS is tied to VIN.
Adjustable frequency ranges from 500kHz to 4MHz via a simple
resistor connecting FS to SGND, according to Equation 2:
RFS[kΩ] = -f-O--2---S2---0-C----[⋅---k1---H0----3-z----] – 14
(EQ. 2)
Overcurrent Protection
The overcurrent protection is realized by monitoring the CSA
output with the OCP comparator, as shown in Figure 3. The current
sensing circuit has a gain of 200mV/A, from the P-FET current to
the CSA output. When the CSA output reaches the threshold, the
OCP comparator is trippled to turn off the P-FET immediately. The
overcurrent function protects the switching converter from a
shorted output by monitoring the current flowing through the
upper MOSFET.
Upon detection of an overcurrent condition, the upper MOSFET
will be immediately turned off and will not be turned on again
until the next switching cycle. Upon detection of the initial
overcurrent condition, the overcurrent fault counter is set to 1. If,
on the subsequent cycle, another overcurrent condition is
detected, the OC fault counter will be incremented. If there are
17 sequential OC fault detections, the regulator will be shut down
under an overcurrent fault condition. An overcurrent fault
condition will result in the regulator attempting to restart in a
hiccup mode within the delay of eight soft-start periods. At the
end of the 8th soft-start wait period, the fault counters are reset
and soft-start is attempted again. If the overcurrent condition
goes away during the delay of 8 soft-start periods, the output will
resume back into regulation point after hiccup mode expires.
Negative Current Protection
Similar to overcurrent, the negative current protection is realized
by monitoring the current across the low-side N-FET, as shown in
Figure 3 on page 5. When the valley point of the inductor current
reaches -3A for 4 consecutive cycles, both P-FET and N-FET are off.
The 100Ω in parallel to the N-FET will activate discharging the
output into regulation. The control will begin to switch when output
is within regulation. The regulator will be in PFM for 20µs before
switching to PWM if necessary.
PG
PG is an open-drain output of a window comparator that
continuously monitors the buck regulator output voltage. PG is
actively held low when EN is low and during the buck regulator
soft-start period. After 1ms delay of the soft-start period, PG
becomes high impedance as long as the output voltage is within
nominal regulation voltage set by VFB. When VFB drops 15% below
or raises 0.8V above the nominal regulation voltage, the ISL8025,
ISL8025A pulls PG low. Any fault condition forces PG low until the
fault condition is cleared by attempts to soft-start. For logic level
output voltages, connect an external pull-up resistor, R1, between
PG and VIN. A 100kΩ resistor works well in most applications.
UVLO
When the input voltage is below the undervoltage lock-out (UVLO)
threshold, the regulator is disabled.
Soft Start-Up
The soft-start-up reduces the in-rush current during the start-up.
The soft-start block outputs a ramp reference to the input of the
error amplifier. This voltage ramp limits the inductor current as
well as the output voltage speed, so that the output voltage rises
in a controlled fashion. When VFB is less than 0.1V at the
beginning of the soft-start, the switching frequency is reduced to
200kHz, so that the output can start-up smoothly at light load
condition. During soft-start, the IC operates in the SKIP mode to
support pre-biased output condition.
Tie SS to SGND for internal soft-start is approximately 1ms.
Connect a capacitor from SS to SGND to adjust the soft-start
time. This capacitor, along with an internal 1.85µA current
source sets the soft-start interval of the converter, tSS, as shown
by Equation 3.
CSS[μF] = 3.1 ⋅ tSS[s]
(EQ. 3)
CSS must be less than 33nF to insure proper soft-start reset after
fault condition.
Enable
The enable (EN) input allows the user to control the turning on or
off of the regulator for purposes, such as power-up sequencing.
When the regulator is enabled, there is typically a 600µs delay
17
FN8357.0
February 20, 2013