datasheetbank_Logo
búsqueda de Hoja de datos y gratuito Fichas de descarga

ADP320 Ver la hoja de datos (PDF) - Analog Devices

Número de pieza
componentes Descripción
fabricante
ADP320 Datasheet PDF : 21 Pages
1 2 3 4 5 6 7 8 9 10 Next Last
Data Sheet
ABSOLUTE MAXIMUM RATINGS
Table 3.
Parameter
VIN1/VIN2, VIN3, VBIAS to GND
VOUT1, VOUT2 to GND
VOUT3 to GND
EN1, EN2, EN3 to GND
Storage Temperature Range
Operating Junction Temperature Range
Soldering Conditions
Rating
–0.3 V to +6.5 V
–0.3 V to VIN1/VIN2
–0.3 V to VIN3
–0.3 V to +6.5 V
–65°C to +150°C
–40°C to +125°C
JEDEC J-STD-020
Stresses at or above those listed under Absolute Maximum
Ratings may cause permanent damage to the product. This is a
stress rating only; functional operation of the product at these
or any other conditions above those indicated in the operational
section of this specification is not implied. Operation beyond
the maximum operating conditions for extended periods may
affect product reliability.
THERMAL DATA
Absolute maximum ratings apply individually only, not in
combination.
The ADP320 triple LDO can be damaged when the junction
temperature limits are exceeded. Monitoring ambient temper-
ature does not guarantee that the junction temperature (TJ) is
within the specified temperature limits. In applications with
high power dissipation and poor thermal resistance the
maximum ambient temperature may have to be derated. In
applications with moderate power dissipation and low PCB
thermal resistance, the maximum ambient temperature can
exceed the maximum limit as long as the junction temperature
is within specification limits.
The junction temperature (TJ) of the device is dependent on the
ambient temperature (TA), the power dissipation of the device
(PD), and the junction-to-ambient thermal resistance of the
package (θJA). Maximum junction temperature (TJ) is calculated
from the ambient temperature (TA) and power dissi-pation (PD)
using the following formula:
TJ = TA + (PD × θJA)
ADP320
Junction-to-ambient thermal resistance (θJA) of the package is
based on modeling and calculation using a 4-layer board. The
junction-to-ambient thermal resistance is highly dependent on
the application and board layout. In applications where high
maximum power dissipation exists, close attention to thermal
board design is required. The value of θJA may vary, depending on
PCB material, layout, and environmental conditions. The
specified values of θJA are based on a four-layer, 4-inch × 3-inch
circuit board. Refer to JEDEC JESD 51-9 for detailed informa-
tion on the board construction. For additional information, see
the AN-617 Application Note, MicroCSP™ Wafer Level Chip
Scale Package.
ΨJB is the junction to board thermal characterization parameter
with units of °C/W. ΨJB of the package is based on modeling and
calculation using a 4-layer board. The JESD51-12, Guidelines for
Reporting and Using Package Thermal Information, states that
thermal characterization parameters are not the same as
thermal resistances. ΨJB measures the component power flowing
through multiple thermal paths rather than a single path as in
thermal resistance, θJB. Therefore, ΨJB thermal paths include
convection from the top of the package as well as radiation from
the package; factors that make ΨJB more useful in real-world
applications. Maximum junction temperature (TJ) is calculated
from the board temperature (TB) and power dissipation (PD)
using the following formula
TJ = TB + (PD × ΨJB)
Refer to JEDEC JESD51-8 and JESD51-12 for more detailed
information about ΨJB.
THERMAL RESISTANCE
θJA and ΨJB are specified for the worst-case conditions, that is, a
device soldered in a circuit board for surface-mount packages.
Table 4.
Package Type
16-Lead 3 mm × 3 mm LFCSP
θJA
ΨJB Unit
49.5 25.2 °C/W
ESD CAUTION
Rev. C | Page 5 of 21

Share Link: 

datasheetbank.com [ Privacy Policy ] [ Request Datasheet ] [ Contact Us ]