
LINEAR SYSTEMS

Twenty-Five Years Of Quality Through Innovation

FEATURES										
HIGH GAIN gfs=7000µmho MINIMUM (J211, J212)										
HIGH INPUT IMPEDENCE IGSS= 100pA MAXIMUM										
LOW CAPACITANCE Ciss= 5pF TYPICAL										
ABSOLUTE MAXIMUM RATINGS										
@ 25 °C (unless otherwise stated)										
Gate-Drain or Gate-Source Voltage	-25V									
Gate Current	10mA									
Total Device Dissipation @25°C Ambient (Derate 3.27 mW/°C)	360mW									
Operating Temperature Range	-55 to +150 °C									

<u>J210, J211, J212</u> SSTJ210, SSTJ211, SSTJ212

LOW NOISE N-CHANNEL JFET GENERAL PURPOSE AMPLIFIER

ELECTRICAL CHARACTERISTICS @ 25 °C (unless otherwise stated)

SYMBOL	CHARACTERISTICS	SSTJ210			SSTJ211			SSTJ212			UNITS	CONDITIONS				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX						
I _{GSS}	Gate Reverse Current		-	-100	-		-100	-		-100	pА	$V_{DS} = 0, V_{GS} = -15V (NOTE 1)$				
V _{GS(off)}	Gate-Source Cutoff Voltage	-1		-3	-2.5		-4.5	-4		-6	V	$V = \frac{V_{DS} = 15V, I_{D} = 1nA}{V_{DS} = 0, I_{G} = -1\mu A}$				
BV_{GSS}	Gate-Source Breakdown Voltage	-25			-25			-25			v					
IDSS	Drain Saturation Current	2		15	7		20	15		40	mA	V _{DS} = 15V, V _{GS} =0 (NOTE 2)				
lg	Gate Current		-10			-10			-10		pА	$V_{DS} = 10V, I_D=1mA (NOTE 1)$				
g fs	Common-Source Forward Transconductance	4,000		12,000	6,000		12,000	7,000		12,000			6 4111-			
g _{os}	Common-Source Output Conductance			150			200			200	µmho		f=1kHz			
Ciss	Common-Source Input Capacitance		4			4			4		рF	~~	~~	~~	V _{DS} = 15V, V _{GS} =0	£ 4141-
Crss	Common-Source Reverse Transfer Capacitance	-	1		-	1		1	1				f=1MHz			
en	Equivalent Short-Circuit Input Noise Voltage	-	10			10			10		nV√Hz		f=1kHz			

<u>NOTE</u>

1. Approximately doubles for every 10°C increase in T_A .

2. Pulse test duration = 2ms.

Information furnished by Linear Integrated Systems is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems.

Linear Integrated Systems (LIS) is a 25-year-old, third-generation precision semiconductor company providing high-quality discrete components. Expertise brought to LIS is based on processes and products developed at Amelco, Union Carbide, Intersil and Micro Power Systems by company President John H. Hall. Hall, a protégé of Silicon Valley legend Dr. Jean Hoerni, was the director of IC Development at Union Carbide, Co-Founder and Vice President of R&D at Intersil, and Founder/President of Micro Power Systems.

Linear Integrated Systems