

3-INPUT / 2-INPUT VIDEO SWITCH

■ GENERAL DESCRIPTION

The **NJM2523** is a switching IC for switching over from one audio or video input signal to another. Internalizing 3 input-1 output, and 2 input-1 output and then each set can be operated independently. One of 2 input-1 output are Clamp type", and they can be operated while setting DC level fixed in position of the video signal. It is a higher efficiency video switch, featuring the operating voltage 4.75 to 13V, the frequency feature 10MHz, and then the Crosstalk 75dB (at 4.43MHz).

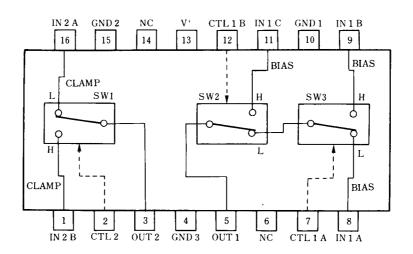
■ PACKAGE OUTLINE

NJM2523D

NJM2523M

■ FEATURES

- Operating Voltage (+4.75V to +13V)
- Input-1 Output Internalizing 3 circuits (Two of them are Clamp type).
- Crosstalk 75dB (at 4.43MHz)
- Wide Bandwidth Frequency 10MHz (2V_{P-P} Input)
- Package Outline DIP16, DMP16


■ RECOMMENDED OPERATING CONDITION

Operating Voltage
 V⁺
 4.75V to 13.0V

■ APPLICATIONS

VCR, Video Camera, AV-TV, Video Disk Player.

■ BLOCK DIAGRAM

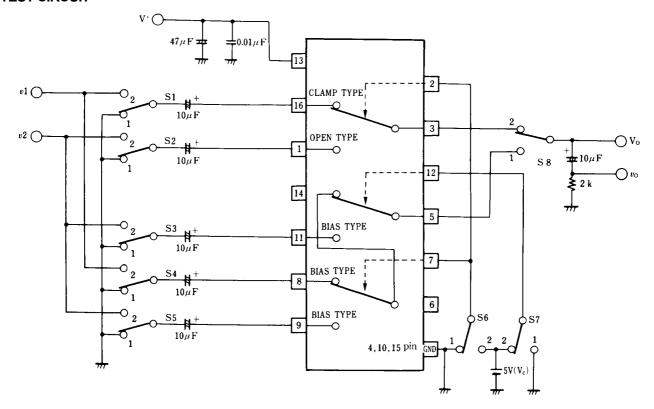
NJM2523D NJM2523M

■ MAXIMUM RATINGS

 $(T_a = 25^{\circ}C)$

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V ⁺	14	V
Power Dissipation	P_D	(DIP16) 700 (DMP16) 350	mW mW
Operating Temperature Range	T _{opr}	-40 to +85	°C
Storage Temperature Range	T _{stg}	-40 to +125 °C	

■ ELECTRICAL CHARACTERISTICS

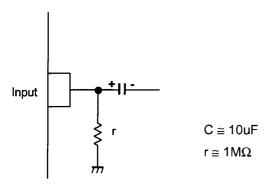

 $(V^+ = 5V, T_a = 25^{\circ}C)$

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current (1)	I _{CC} 1	V ⁺ = 5V (Note1)	6.7	9.7	12.7	mA
Operating Current (2)	I _{CC} 2	V ⁺ = 9V (Note1)	8.6	12.3	16.0	mA
Voltage Gain	Gv	$V_{I} = 100kHz, 2V_{P-P}, V_{O} / V_{I}$	-0.6	-0.1	+0.4	dB
Frequency Gain	G _F 1	$V_{I} = 2V_{P-P}, V_{O} (10MHz) / V_{O} (100kHz)$	-1.0	0	+1.0	dB
Differential Gain	DG	V _I = 2V _{P-P} , Standerd Staircase Signal	-	0.3	-	%
Differential Phasa	DP	V _I = 2V _{P-P} , Standerd Staircase Signal	-	0.3	-	deg
Output offset Voltage	Vos1	(Note2)	-25	0	+25	mV
Crosstalk	CT	$V_1 = 2V_{P-P}, 4.43MHz, V_0 / V_1$	-	-75	-	dB
Switch Change Over Voltage	V_{CH}	All inside Switches ON	2.5	-	-	V
Switch Change Over Voltage	V_{CL}	All inside Switches OFF	-	-	1.0	V

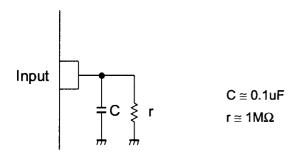
(Note1) S1 = S2 = S3 = S4 = S5 = S6 = S7 = 1

(Note2) S1 = S2 = S3 = S4 = S5 = 1, S8 = 1, S7 = 1, S6 = $1 \rightarrow 2$ (S6 = 1, S7 = $1 \rightarrow 2$) Measure the output DC voltage difference

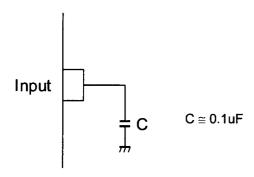
■ TEST CIRCUIT



■ TERMINLAL EXPLANATION


PIN No.	PIN NAME	VOL	INSIDE EQUIVALENT CIRCUIT
8 9 11	IN 1 A IN 1 B IN 1 C [Input]	$ \left(\frac{1}{2}V^{+}\right) $	500 15k 2.5V
16	IN 2 A [Input]	$ \left(\frac{3}{10}V^{+}\right) $	500 777 2.2V
1	IN 2 B [Input]		500
7 12 2	CTL 1A CTL 1B CTL 2 [Switching]		School of the second se
5	OUT1 [Output]	$1.8V$ $\left(\frac{1}{2}V^+ - 0.7\right)$	
3	OUT2 [Output]		Ооит
13	V ⁺	5V	
15 4 10	GND 1 GND 2 GND 3		

■ APPLICATION


This IC requires $1M\Omega$ resistance between INPUT and GND pin for clamp type input since the minute current causes an unstable pin voltage.

This IC requires $0.1\mu F$ capacitor between INPUT and GND, $1M\Omega$ resistance between INPUT and GND for clamp type input at mute mode.

This IC requires 0.1µF capacitor between INPUT and GND for bias type input at mute mode.

[CAUTION]

The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.