Features

- 12-Bit Resolution
- Low Gain T.C. 2ppm/${ }^{\circ} \mathrm{C}$ (Typ)
- Fast TTL/CMOS Compatible Data Latches
- Single +5 V to +15 V Supply
- Low Power
- Low Cost

Pinout

AD7545
(PDIP) TOP VIEW

Absolute Maximum Ratings

Supply Voltage (VDD to DGND). $-0.3 \mathrm{~V},+17 \mathrm{~V}$
Digital Input Voltage to DGND 0.3 V , $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
$V_{\text {RFB }}$, V $_{\text {REF }}$ to DGND . $\pm 25 \mathrm{~V}$
$V_{\text {PIN } 1}$ to DGND . $-0.3 \mathrm{~V}, \mathrm{~V}_{\text {DD }}+0.3 \mathrm{~V}$
AGND to DGND . 0.3 V , $\mathrm{V}_{\text {DD }}+0.3 \mathrm{~V}$

Thermal Information

Operating Conditions

Temperature Range $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:

1. θ_{JA} is measured with the component mounted on a low effective thermal conductivity test board in free air. See Tech Brief TB379 for details.

Electrical Specifications $\quad T_{A}=$ See Note $2, \mathrm{~V}_{\text {REF }}=+10 \mathrm{~V}, \mathrm{~V}_{\text {OUT1 }}=0 \mathrm{~V}, \mathrm{AGND}=\mathrm{DGND}$, Unless Otherwise Specified

PARAMETER		TEST CONDITIONS	$\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}$ (NOTE 7)			$\mathrm{V}_{\mathrm{DD}}=+\mathbf{1 5 V}$ (NOTE 7)			UNITS	
		MIN	TYP	MAX	MIN	TYP	MAX			
STATIC PERFORMANCE										
Resolution				12	-	-	12	-	-	Bits
Relative Accuracy	J		-	-	± 2	-	-	± 2	LSB	
	K		-	-	± 1	-	-	± 1	LSB	
Differential Nonlinearity	J	10-Bit Monotonic $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-	-	± 4	-	-	± 4	LSB	
	K	12-Bit Monotonic T $_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-	-	± 1	-	-	± 1	LSB	
Gain Error (Using Internal RFB)	J	DAC Register Loaded with 111111111111	-	-	± 20	-	-	± 25	LSB	
	K	Gain Error is Adjustable Using the Circuits of Figures 5 and 6 (Note 3)	-	-	± 10	-	-	± 15	LSB	
Gain Temperature Coefficient Δ Gain/sTemperature		Typical Value is $2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ for $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}$ (Note 4)	-	-	± 5	-	-	± 10	ppm $/{ }^{\circ} \mathrm{C}$	
DC Supply Rejection Δ Gain/ $\Delta V_{D D}$		$\Delta \mathrm{V}_{\mathrm{DD}}= \pm 5 \%$	0.015	-	0.03	0.01	-	0.02	\%	
Output Leakage Current at OUT1	J, K	$\begin{aligned} & \mathrm{DB} 0-\mathrm{DB} 11=0 \mathrm{~V} ; \overline{\mathrm{WR}}, \\ & \overline{\mathrm{CS}}=0 \mathrm{~V}(\text { Note } 2) \end{aligned}$	-	-	50	-	-	50	nA	
DYNAMIC CHARACTERISTICS										
Current Settling Time		To $1 / 2$ LSB, OUT1 LOAD $=100 \Omega$, DAC Output Measured from Falling Edge of $\overline{\mathrm{WR}}, \overline{\mathrm{CS}}=0 \mathrm{~V}$ (Note 4)	-	-	2	-	-	2	$\mu \mathrm{s}$	
Propagation Delay from Digital Input Change to 90% of Final Analog Output		$\begin{aligned} & \text { OUT1 LOAD }=100 \Omega, \\ & \text { CEXT }^{2}=13 \mathrm{pF}(\text { Notes } 4 \text { and } 5) \end{aligned}$	-	-	300	-	-	250	ns	
Digital to Analog Glitch Impulse		$\mathrm{V}_{\text {REF }}=$ AGND	-	400	-	-	250	-	$n \mathrm{~V} / \mathrm{s}$	
AC Feedthrough at OUT1		$\mathrm{V}_{\mathrm{REF}}= \pm 10 \mathrm{~V}, 10 \mathrm{kHz}$ Sinewave	-	5	-	-	5	-	$m V_{\text {P-P }}$	
ANALOG OUTPUTS										
Output Capacitance	Cout1	$\begin{aligned} & \mathrm{DBO}-\mathrm{DB} 11=0 \mathrm{~V}, \\ & \mathrm{WR}, \mathrm{CS}=0 \mathrm{~V}(\text { Note } 4) \end{aligned}$	-	-	70	-	-	70	pF	
		$\begin{aligned} & \mathrm{DB0}-\mathrm{DB} 11=\mathrm{V}_{\mathrm{DD}}, \\ & \mathrm{WR}, \mathrm{CS}=0 \mathrm{~V} \text { (Note 4) } \end{aligned}$	-	-	200	-	-	200	pF	

Electrical Specifications $\quad T_{A}=$ See Note 2, $\mathrm{V}_{\mathrm{REF}}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT} 1}=0 \mathrm{~V}, \mathrm{AGND}=\mathrm{DGND}$, Unless Otherwise Specified (Continued)

PARAMETER	TEST CONDITIONS	$\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}$ (NOTE 7)			$\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V}$ (NOTE 7)			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
REFERENCE INPUT								
Input Resistance (Pin 19 to GND)	Input Resistance $\mathrm{TC}=-300 \mathrm{ppm} /{ }^{\circ} \mathrm{C}(\mathrm{Typ})$	7	-	-	7	-	-	$\mathrm{k} \Omega$
	Typical Input Resistance $=11 \mathrm{k} \Omega$	-	-	25	-	-	25	k Ω
DIGITAL INPUTS								
Input High Voltage, V_{IH}		2.4	-	-	-	-	13.5	V
Input Low Voltage, $\mathrm{V}_{\text {IL }}$		-	-	0.8	-	-	1.5	V
Input Current, I_{IN}	$\mathrm{V}_{\text {IN }}=0$ or V_{DD} (Note 6)	± 1	-	± 10	± 1	-	± 10	$\mu \mathrm{A}$
$\begin{array}{ll}\text { Input Capacitance } & \\ & \begin{array}{l}\text { DB0 - } \\ \text { DB11 }\end{array} \\ & \overline{\mathrm{WR}}, \overline{\mathrm{CS}}\end{array}$	$\mathrm{V}_{\text {IN }}=0($ Note 4)	-	-	7	-	-	7	pF
	$\mathrm{V}_{\text {IN }}=0$ (Note 4)	-	-	20	-	-	20	pF
SWITCHING CHARACTERISTICS (Note 4)								
Chip Select to Write Setup Time, tcs	See Figure 1	380	200	-	200	120	-	ns
Chip Select to Write Hold Time, t_{CH}	See Figure 1	0	-	-	0	-	-	ns
Write Pulse Width, twr	$\mathrm{t}_{\mathrm{CS}} \geq \mathrm{t}_{\mathrm{WR}}, \mathrm{t}_{\mathrm{CH}} \geq 0$, See Figure 1	400	175	-	240	100		ns
Data Setup Time, ${ }_{\text {DS }}$	See Figure 1	210	100	-	120	60	-	ns
Data Hold Time, tDH	See Figure 1	10	-	-	10	-	-	ns
POWER SUPPLY CHARACTERISTICS								
IDD	All Digital Inputs $\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$	-	-	2	-	-	2	mA
	All Digital Inputs 0 V or $\mathrm{V}_{\text {DD }}$	-	100	500	-	100	500	$\mu \mathrm{A}$
	All Digital Inputs 0 V or $\mathrm{V}_{\text {DD }}$	-	10	-	-	10	-	$\mu \mathrm{A}$

NOTES:
2. Temperature Ranges as follows: J, K versions: $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ for TYP Specifications. MIN and MAX are measured over the specified operating range.
3. This includes the effect of 5 ppm maximum gain TC.
4. Parameter not tested. Parameter guaranteed by design, simulation, or characterization.
5. DB0 $-\mathrm{DB} 11=0 \mathrm{~V}$ to V_{DD} or V_{DD} to 0 V .
6. Logic inputs are MOS gates. Typical input current $\left(25^{\circ} \mathrm{C}\right)$ is less than 1 nA .
7. Typical values are not guaranteed but reflect mean performance specification. Specifications subject to change without notice.

Timing Diagrams

FIGURE 1A. TYPICAL WRITE CYCLE
FIGURE 1. WRITE CYCLE TIMING DIAGRAM

MODE SELECTION	
WRITE MODE:	HOLD MODE: CS and WR low, DAC responds to data bus (DB0 - DB11) inputs
Either $\overline{\text { CS }}$ or WR high, data bus (DB0 - DB11) is locked out; DAC holds last data present when WR or $\overline{\text { CS }}$ assumed high state.	

NOTES:
8. $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$.
9. $\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=40 \mathrm{~ns}$.
10. All input signal rise and fall times measured from 10% to 90% of $V_{D D}$.
11. Timing measurement reference level is $\left(\mathrm{V}_{\mathrm{IH}}+\mathrm{V}_{\mathrm{IL}}\right) / 2$.
12. Since input data latches are transparent for $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ both low, it is preferred to have data valid before $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ both go low. This prevents undesirable changes at the analog output while the data inputs settle.

Circuit Information - D/A Converter Section

Figure 2 shows a simplified circuit of the D/A converter section of the AD7545. Note that the ladder termination resistor is connected to AGND. R is typically $11 \mathrm{k} \Omega$.
The binary weighted currents are switched between the OUT1 bus line and AGND by N-Channel switches, thus maintaining a constant current in each ladder leg independent of the switch state. One of the current switches is shown in Figure 3.

FIGURE 2. SIMPLIFIED D/A CIRCUIT OF AD7545

FIGURE 3. N-CHANNEL CURRENT STEERING SWITCH
The capacitance at the OUT1 bus line, CoUT1, is code dependent and varies from 70pF (all switches to AGND) to 200pF (all switches to OUT1).

The input resistance at $\mathrm{V}_{\text {REF }}$ (Figure 2) is always equal to $R_{L D R}$ ($R_{L D R}$ is the $R / 2 R$ ladder characteristic resistance and is equal to the value " R "). Since $R_{I N}$ at the $V_{\text {REF }}$ pin is constant, the reference terminal can be driven by a reference voltage or a reference current, AC or DC, of positive or negative polarity. (If a current source is used, a low temperature coefficient external $R_{F B}$ is recommended to define scale factor).

Circuit Information - Digital Section

Figure 4 shows the digital structure for one bit. The digital signals CONTROL and $\overline{\mathrm{CONTROL}}$ are generated from $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$.

FIGURE 4. DIGITAL INPUT STRUCTURE

The input buffers are simple CMOS inverters designed such that when the AD7545 is operated with $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$, the buffers convert TTL input levels (2.4 V and 0.8 V) into CMOS logic levels. When V_{IN} is in the region of 2.0 V to 3.5 V the input buffers operate in their linear region and draw current from the power supply. To minimize power supply currents it is recommended that the digital input voltages be as close to the supply rails ($V_{D D}$ and $D G N D$) as is practically possible.

The AD7545 may be operated with any supply voltage in the range $5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 15 \mathrm{~V}$. With $\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V}$ the input logic levels are CMOS compatible only, i.e., 1.5 V and 13.5 V .

Application

Output Offset

CMOS current-steering D/A converters exhibit a code dependent output resistance which in turn causes a code dependent amplifier noise gain. The effect is a code dependent differential nonlinearity term at the amplifier output which depends on $\mathrm{V}_{\text {OS }}$ where V_{OS} is the amplifier input offset voltage. To maintain monotonic operation it is recommended that $\mathrm{V}_{\text {OS }}$ be no greater than $\left(25 \times 10^{-6}\right)$ ($\mathrm{V}_{\mathrm{REF}}$) over the temperature range of operation.

General Ground Management

AC or transient voltages between AGND and DGND can cause noise injection into the analog output. The simplest method of ensuring that voltages at AGND and DGND are equal is to tie AGND and DGND together at the AD7545. In more complex systems where the AGND and DGND connection is on the backplane, it is recommended that two diodes be connected in inverse parallel between the AD7545 AGND and DGND pins (1N914 or equivalent).

Digital Glitches

When $\overline{\mathrm{WR}}$ and $\overline{\mathrm{CS}}$ are both low the latched are transparent and the D/A converter inputs follow the data inputs. In some bus systems, data on the data bus is not always valid for the whole period during which $\overline{W R}$ is low and as a result invalid data can briefly occur at the D/A converter inputs during a write cycle. Such invalid data can cause unwanted glitches at the output of the D/A converter. The solution to this
problem, if it occurs, is to retime the write pulse $(\overline{\mathrm{WR}})$ so that it only occurs when data is valid.

Another cause of digital glitches is capacitive coupling from the digital lines to the OUT1 and AGND terminals. This should be minimized by isolating the analog pins of the AD7545 (pins 1, 2, 19,20) from the digital pins by a ground track run between pins 2 and 3 and between pins 18 and 19 of the AD7545. Note how the analog pins are at one end of the package and separated from the digital pins by V_{DD} and DGND to aid isolation at the board level. On-chip capacitive coupling can also give rise to crosstalk from the digital to analog sections of the AD7545, particularly in circuits with high currents and fast rise and fall times. This type of crosstalk is minimized by using $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}$. However, great care should be taken to ensure that the +5 V used to power the AD7545 is free from digitally induced noise.

Temperature Coefficients

The gain temperature coefficient of the AD7545 has a maximum value of $5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ and a typical value of $2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. This corresponds to worst case gain shifts of 2 LSBs and 0.8 LSBs respectively over a $100^{\circ} \mathrm{C}$ temperature range. When trim resistors R1 and R2 are used to adjust full scale range, the temperature coefficient of R1 and R2 should also be taken into account.

Basic Applications

Figures 5 and 6 show simple unipolar and bipolar circuits using the AD7545. Resistor R1 is used to trim for full scale. Capacitor C1 provides phase compensation and helps prevent overshoot and ringing when using high speed op amps. Note that the circuits of Figures 5 and 6 have constant input impedance at the $\mathrm{V}_{\text {REF }}$ terminal.
The circuit of Figure 5 can either be used as a fixed reference D/A converter so that it provides an analog output voltage in the range 0 V to $-\mathrm{V}_{\mathrm{IN}}$ (note the inversion introduced by the op amp) or $\mathrm{V}_{\text {IN }}$ can be an AC signal in which case the circuit behaves as an attenuator (2-Quadrant Multiplier). $\mathrm{V}_{I N}$ can be any voltage in the range $-20 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq+20 \mathrm{~V}$ (provided the op amp can handle such voltages) since $\mathrm{V}_{\text {REF }}$ is permitted to exceed V_{DD}. Table 2 shows the code relationship for the circuit of Figure 5.

Figure 6 and Table 3 illustrate the recommended circuit and code relationship for bipolar operation. The D/A function itself uses offset binary code and inverter U_{1} on the MSB line converts 2's complement input code to offset binary code. If appropriate, inversion of the MSB may be done in software using an exclusive -OR instruction and the inverter omitted. R3, R4 and R5 must be selected to match within 0.01% and they should be the same type of resistor (preferably wire-wound or metal foil), so that their temperature coefficients match. Mismatch of R3 value to R4 causes both offset and full scale error. Mismatch of R5 to R4 and R3 causes full scale error.

The choice of the operational amplifiers in Figure 5 and Figure 6 depends on the application and the trade off between required precision and speed. Below is a list of
operational amplifiers which are good candidates for many applications. The main selection criteria for these operational amplifiers is to have low V_{OS}, low V_{OS} drift, low bias current and low settling time.

These amplifiers need to maintain the low nonlinearity and monotonic operation of the D/A while providing enough speed for maximum converter performance.

Operational Amplifiers

HA-5127 Ultra Low Noise, Precision
HA-5137 Ultra Low Noise, Precision, Wide Band
HA-5147 Ultra Low Noise, Precision, High Slew Rate
HA-5170 Precision, JFET Input
TABLE 1. RECOMMENDED TRIM RESISTOR VALUES vs GRADES FOR $V_{D D}=+5 \mathrm{~V}$

TRIM RESISTOR	J	K
R1	500Ω	200Ω
R2	150Ω	68Ω

TABLE 2. UNIPOLAR BINARY CODE TABLE FOR CIRCUIT OF FIGURE 5

BINARY NUMBER IN DAC REGISTER		ANALOG OUTPUT	
1111	1111	1111	$-V_{\text {IN }}\left\{\frac{4095}{4096}\right\}$
1000	0000	0000	$-V_{\operatorname{IN}}\left\{\frac{2048}{4096}\right\}=-\frac{1}{2} \mathrm{~V}_{\text {IN }}$
0000	0000	0001	$-\mathrm{V}_{\text {IN }}\left\{\frac{1}{4096}\right\}$
0000	0000	0000	0 V

TABLE 3. 2'S COMPLEMENT CODE TABLE FOR CIRCUIT OF FIGURE 6

DATA INPUT			ANALOG OUTPUT
0111	1111	1111	$+\mathrm{V}_{\text {IN }} \bullet\left\{\frac{2047}{2048}\right\}$
0000	0000	0001	$+\mathrm{V}_{\text {IN }} \bullet\left\{\frac{1}{2048}\right\}$
0000	0000	0000	0 V
1111	1111	1111	$-\mathrm{V}_{\mathrm{IN}} \bullet\left\{\frac{1}{2048}\right\}$
1000	0000	0000	$-\mathrm{V}_{\mathrm{IN}} \bullet\left\{\frac{2048}{2048}\right\}$

FIGURE 5. UNIPOLAR BINARY OPERATION

FIGURE 6. BIPOLAR OPERATION (2'S COMPLEMENT CODE)

Die Characteristics

DIE DIMENSIONS
121 mils $\times 123$ mils $(3073 \mu \mathrm{~m} \times 3124 \mu \mathrm{~m})$
METALLIZATION
Type: Pure Aluminum
Thickness: $10 \pm 1 \mathrm{k} \AA$

PASSIVATION

Type: PSG/Nitride
PSG: $7 \pm 1.4 \mathrm{k} \AA$
Nitride: $8 \pm 1.2 \mathrm{k} \AA$
PROCESS
CMOS Metal Gate

Metallization Mask Layout

AD7545

Dual-In-Line Plastic Packages (PDIP)

NOTES:

1. Controlling Dimensions: INCH. In case of conflict between English and Metric dimensions, the inch dimensions control.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication No. 95.
4. Dimensions $A, A 1$ and L are measured with the package seated in JEDEC seating plane gauge GS-3.
5. D, D1, and E1 dimensions do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010 inch (0.25 mm).
6. E and e_{A} are measured with the leads constrained to be perpendicular to datum $-\mathrm{C}-$.
7. e_{B} and e_{C} are measured at the lead tips with the leads unconstrained. ec must be zero or greater.
8. B1 maximum dimensions do not include dambar protrusions. Dambar protrusions shall not exceed 0.010 inch $(0.25 \mathrm{~mm})$.
9. N is the maximum number of terminal positions.
10. Corner leads ($1, \mathrm{~N}, \mathrm{~N} / 2$ and $\mathrm{N} / 2+1$) for E8.3, E16.3, E18.3, E28.3, E42.6 will have a B1 dimension of $0.030-0.045$ inch ($0.76-1.14 \mathrm{~mm}$).

All Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation's quality certifications can be viewed at website www.intersil.com/design/quality/iso.asp.
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site www.intersil.com

Sales Office Headquarters

Palm Bay, FL 32905
TEL: (321) 724-7000
FAX: (321) 724-7240

EUROPE
Intersil SA
Mercure Center
100, Rue de la Fusee
1130 Brussels, Belgium
TEL: (32) 2.724.2111
FAX: (32) 2.724.22.05

ASIA

Intersil Ltd.
8F-2, 96, Sec. 1, Chien-kuo North,
Taipei, Taiwan 104
Republic of China
TEL: 886-2-2515-8508
FAX: 886-2-2515-8369

