

March 1993 Revised February 2005

74VHC393 Dual 4-Bit Binary Counter

General Description

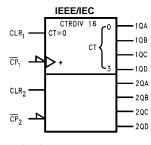
The VHC393 is an advanced high speed CMOS 4-bit Binary Counter fabricated with silicon gate CMOS technology. It achieves the high speed operation similar to equivalent Bipolar Schottky TTL while maintaining the CMOS low power dissipation. It contains two independent counter circuits in one package, so that counting or frequency division of 8 binary bits can be achieved with one IC. This device changes state on the negative going transition of the $\overline{\text{CLOCK}}$ pulse. The counter can be reset to "0" $(\text{Q}_0\text{-}\text{Q}_3=\text{"L"})$ by a HIGH at the CLEAR input regardless of other inputs.

An input protection circuit ensures that 0V to 7V can be applied to the input pins without regard to the supply volt-

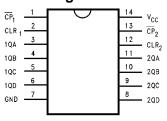
age. This device can be used to interface 5V to 3V systems and two supply systems such as battery back up. This circuit prevents device destruction due to mismatched supply and input voltages.

Features

- High Speed: $f_{MAX} = 170 \text{ MHz (typ)}$ at $T_A = 25^{\circ}\text{C}$
- \blacksquare Low power dissipation: I_{CC} = 4 μA (max) at T_A = 25 $^{\circ}C$
- High noise immunity: V_{NIH} = V_{NIL} = 28% V_{CC} (min)
- Power down protection is provided on all inputs
- Pin and function compatible with 74HC393


Ordering Code:

Order Number	Package Number	Package Description
74VHC393M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
74VHC393SJ	M14D	Pb-Free 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74VHC393MTC	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74VHC393MTCX_NL (Note 1)	MTC14	Pb-Free 14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74VHC393N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

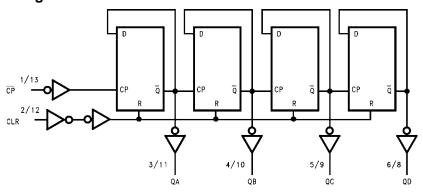

Surface mount packages are also available on Tape and Reel. Specify by appending the suffix letter "X" to the ordering code. Pb-Free package per JEDEC J-STD-020B.

Note 1: "_NL" indicates Pb-Free package (per JEDEC J-STD-020B). Device available in Tape and Reel only.

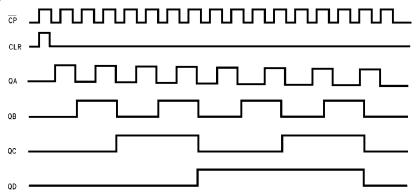
Logic Symbol

Connection Diagram

Pin Descriptions


Pin Names	Description
CLR1, CLR2	Clear Inputs
$\overline{CP}_1, \overline{CP}_2$	Clock Pulse Inputs
QA, QB, QC, QD	Outputs

Truth Table


Input	Outputs						
CP	CLR	QA	QB	QC	QD		
Х	Н	L	L	L	L		
Ł	L	Count Up					
<u>_</u>	L	No Change					

X: Don't Care

System Diagram

Timing Chart

Absolute Maximum Ratings(Note 2)

Storage Temperature (T_{STG}) -65°C to +150°C

Lead Temperature (T_L)

(Soldering, 10 seconds) 260°C

Recommended Operating Conditions (Note 3)

Input Rise and Fall Time (t_r, t_f)

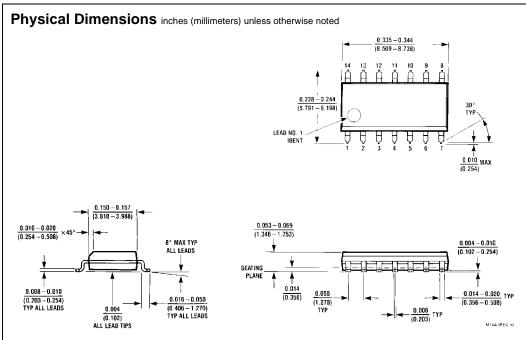
 $V_{CC} = 3.3V \pm 0.3V$ $0 \sim 100 \text{ ns/V}$ $V_{CC} = 5.0V \pm 0.5V$ $0 \sim 20 \text{ ns/V}$

Note 2: Absolute Maximum Ratings are values beyond which the device may be damaged or have its useful life impaired. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside databook specifications.

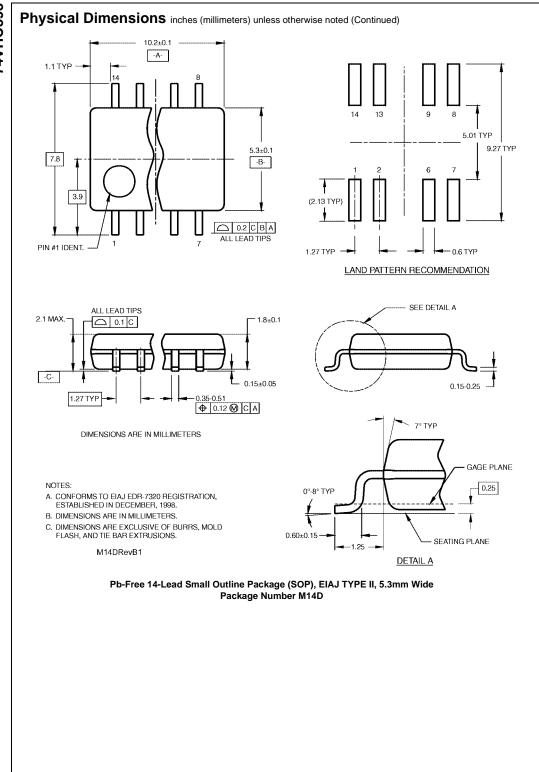
Note 3: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

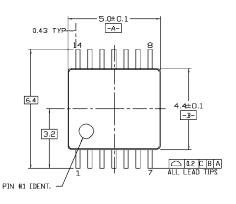
Symbol	Parameter	V _{CC}	T _A = 25°C			T _A = -40°C to +85°C Min Max		Units	Conditions	
Cymbol Farameter		(V)	Min Typ		Max			Oillis		
V _{IH}	HIGH Level	2.0	1.50			1.50		V		
	Input Voltage	3.0 – 5.5	0.7 V _{CC}			0.7 V _{CC}		V		
V _{IL}	LOW Level	2.0			0.50		0.50	V		
	Input Voltage	3.0 – 5.5			$0.3\mathrm{V}_{\mathrm{CC}}$		$0.3 V_{\rm CC}$	V		
V _{OH}	HIGH Level	2.0	1.9	2.0		1.9			$V_{IN} = V_{IH}$	$I_{OH} = -50 \mu A$
	Output Voltage	3.0	2.9	3.0		2.9		V	or V _{IL}	
		4.5	4.4	4.5		4.4				
		3.0	2.58			2.48		V	Ì	$I_{OH} = -4 \text{ mA}$
		4.5	3.94			3.80		V		$I_{OH} = -8 \text{ mA}$
V _{OL}	LOW Level	2.0		0.0	0.1		0.1		$V_{IN} = V_{IH}$	I _{OL} = 50 μA
	Output Voltage	3.0		0.0	0.1		0.1	V	or V _{IL}	
		4.5		0.0	0.1		0.1			
		3.0			0.36		0.44	V	Ì	I _{OL} = 4 mA
		4.5			0.36		0.44	V		$I_{OL} = 8 \text{ mA}$
I _{IN}	Input Leakage Current	0 – 5.5			±0.1		±1.0	μА	V _{IN} = 5.5\	or GND
I _{CC}	Quiescent Supply Current	5.5			4.0		40.0	μА	$V_{IN} = V_{CC}$	or GND

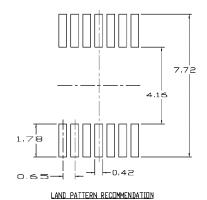

AC Electrical Characteristics

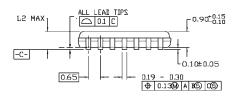
Symbol	Parameter	V _{CC}	T _A = 25°C			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions
J,	rarameter	(V)	Min	Тур	Max	Min	Max	Ullis	Conditions
t _{PLH}	Propagation	3.3 ± 0.3		8.6	13.2	1.0	15.5		C _L = 15 pF
t _{PHL}	Delay Time			11.1	16.7	1.0	19.0	ns	C _L = 50 pF
	(CP -QA)	5.0 ± 0.5		5.8	8.5	1.0	10.0	20	C _L = 15 pF
				7.3	10.5	1.0	12.0	ns	C _L = 50 pF
t _{PLH}	Propagation	3.3 ± 0.3		10.2	15.8	1.0	18.5	ne	C _L = 15 pF
t _{PHL}	Delay Time			12.7	19.3	1.0	22.0	ns	C _L = 50 pF
	(CP -QB)	5.0 ± 0.5		6.8	9.8	1.0	11.5		C _L = 15 pF
				8.3	11.8	1.0	13.5	ns	C _L = 50 pF
t _{PLH}	Propagation	3.3 ± 0.3		11.7	18.0	1.0	21.0	20	C _L = 15 pF
t _{PHL}	Delay Time			14.2	21.5	1.0	24.5	ns	C _L = 50 pF
	(CP -QC)	5.0 ± 0.5		7.7	11.2	1.0	13.0	ns	C _L = 15 pF
				9.2	13.2	1.0	15.0	115	C _L = 50 pF
t _{PLH}	Propagation	3.3 ± 0.3		13.0	19.7	1.0	23.0	20	C _L = 15 pF
t _{PHL}	Delay Time			15.5	23.2	1.0	26.5	ns	C _L = 50 pF
	(CP -QD)	5.0 ± 0.5		8.5	12.5	1.0	14.5	ns	C _L = 15 pF
				10.0	14.5	1.0	16.5	ns	C _L = 50 pF
t _{PLH}	Propagation	3.3 ± 0.3		7.9	12.3	1.0	14.5	ns	C _L = 15 pF
t _{PHL}	Delay Time			10.4	15.8	1.0	18.0	115	C _L = 50 pF
	(CLR-Q _n)	5.0 ± 0.5		5.4	8.1	1.0	9.5	20	C _L = 15 pF
				6.9	10.1	1.0	11.5	ns	C _L = 50 pF
f _{MAX}	Maximum	3.3 ± 0.3	75	120		65			C _L = 15 pF
	Clock		45	65		35		MHz	C _L = 50 pF
		5.0 ± 0.5	125	170		105		IVITZ	C _L = 15 pF
			85	115		75			C _L = 50 pF
C _{IN}	Input Capacitance			4	10		10	pF	V _{CC} = Open
C _{PD}	Power Dissipation Capacitance			23				pF	(Note 4)

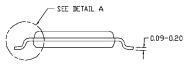

Note 4: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load Average operating current can be obtained by the equation: I_{CC}(opr.) = C_{PD}*V_{CC}*f_{IN} + I_{CC/2} (per Counter)

AC Operating Requirements

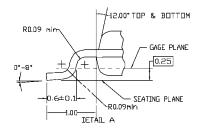

Symbol	Parameter	V _{cc}	T _A =	25°C	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	Units	
	Parameter	(V)	Тур	Guarar	teed Minimum		
t _W (L)	Minimum Pulse	3.3 ± 0.3		5.0	5.0	no	
$t_W(H)$	Width (CP)	5.0 ± 0.5		5.0	5.0	ns	
t _W (H)	Minimum Pulse	3.3 ± 0.3		5.0	5.0		
	Width (CLR)	5.0 ± 0.5		5.0	5.0	ns	
t _{REM}	Minimum Removal	3.3 ± 0.3		5.0	5.0		
	Time	5.0 ± 0.5		4.0	4.0	ns	



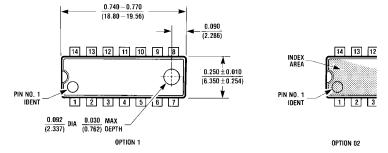

14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Package Number M14A

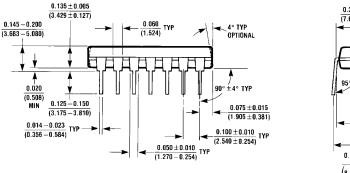


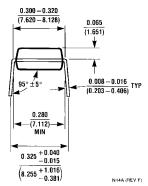
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)



NOTES:


- A. CONFORMS TO JEDEC REGISTRATION MO-153, VARIATION AB, REF NOTE 6, DATED 7/93
- B. DIMENSIONS ARE IN MILLIMETERS
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS
 D. DIMENSIONING AND TOLERANCES PER ANSI Y14-5M, BY


MTC14revD



14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC14

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N14A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com