FEATURES

Fixed gain of $\mathbf{2 0 ~ d B}$
Operation up to 500 MHz
+41.8 dBm OIP3 at 70 MHz
Noise Figure $\mathbf{2 . 5 ~ d B ~ a t ~} \mathbf{7 0 ~ M H z}$
Temperature and power supply stable
Power supply: 5 V
Power supply current: 90 mA per amplifier
1000 V ESD (Class 1C)

FUNCTIONAL BLOCK DIAGRAM

Figure 1. Block Diagram

GENERAL DESCRIPTION

The ADL5534 contains two broadband, fixed-gain, linear amplifiers in an $4 \times 4 \mathrm{~mm}$ LFCSP package and operates at frequencies up to 500 MHz . The device can be used in a wide variety of wired and wireless devices including cellular, GSM and WCDMA, and broadband applications.

The ADL5534 has a fixed gain 20 dB and is stable over frequency, temperature, power supply and from device to device. It achieves an OIP3 of 41.8 dBm with an output compression point of +20.2 dBm and a noise figure of 2.5 dB . The ADL5534 is single-ended and internally matched to 50Ω with an input return loss of 10 dB . Only input/output ac-
coupling capacitors, a power supply decoupling capacitor and external inductor are required for operation.

This IF amplifier operates with supply voltage of +5 V , consuming 90 mA of supply current per amplifier.

Fabricated on a GaAs HBT process and has an ESD rating of 1000 V (Class 1C). The device is packaged in a $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ LFCSP that uses an exposed paddle for excellent thermal impedance and operates from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. A fully populated evaluation board is available.

[^0]
TABLE OF CONTENTS

Features ... 1	ESD Caution... 4
Functional Block Diagram .. 1	Pin Configuration and Function Descriptions............................... 5

REVISION HISTORY

5/07-Rev. PrD: Preliminary Version

SPECIFICATIONS

$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 1.

Parameter	Conditions	Min	Typ	Max	Unit
OVERALL FUNCTION					
Frequency Range		20		500	MHz
Gain vs. Frequency	$\pm 50 \mathrm{MHz}$. Center Frequency $=190 \mathrm{MHz}$ or 380 MHz		± 0.15		dB
Input Return Loss (S11)	30 MHz to 500 MHz		-10		dB
Output Return Loss (S22)	30 MHz to 500 MHz		-10		dB
Isolation (RFIN1 to RFOUT2 and RFIN2 to RFOUT1)	Frequency $=200 \mathrm{MHz}$		-29.8		dB
Isolation (RFIN1 to RFOUT2 and RFIN2 to RFOUT1)	Frequency $=500 \mathrm{MHz}$		-22.5		dB
FREQUENCY $=70 \mathrm{MHz}$					
Gain			19.8		dB
vs. Temperature	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$		$\pm .25$		dB
Output 1 dB Compression Point			20.0		dBm
Output Third-Order Intercept	$\Delta \mathrm{f}=1 \mathrm{MHz}$, Output Power (Pout) $=0 \mathrm{dBm}$ (per tone)		41.8		dBm
Noise Figure			2.5		dB
FREQUENCY = 190 MHz					
Gain			19.4		dB
vs. Temperature	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$		$\pm .25$		dB
Output 1 dB Compression Point			20.2		dBm
Output Third-Order Intercept	$\Delta \mathrm{f}=1 \mathrm{MHz}$, Output Power (Pout) $=0 \mathrm{dBm}$ (per tone)		40.1		dBm
Noise Figure			2.7		dB
FREQUENCY $=380 \mathrm{MHz}$					
Gain			18.8		dB
vs. Temperature	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$		$\pm .25$		dB
Output 1 dB Compression Point			20.1		dBm
Output Third-Order Intercept	$\Delta \mathrm{f}=1 \mathrm{MHz}$, Output Power (Pout) $=0 \mathrm{dBm}$ (per tone)		37.0		dBm
Noise Figure			2.9		
POWER INTERFACE	Pins RFOUT, Vcc				
Supply Voltage		4.75	5	5.25	V
Supply Current	Current Consumption is Specified Per Amplifier		90		mA
vs. Temperature	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ (Specified Per Amplifier)		104		mA
Power Dissipation			450		mW
	VPOS = 5V (Specified Per Amplifier)				

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Supply Voltage, VPOS	5.5 V
Input Power Per Amplifier(re: 50Ω)	+12 dBm
Internal Power Dissipation Per Amplifier	650 mW
(Paddle Soldered)	
θ_{JA} (Paddle Soldered)	$\mathrm{TBD}{ }^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Junction Temperature	$150^{\circ} \mathrm{C}$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
\quad (Soldering 60 sec)	$240^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 2.
Table 3. Pin Function Descriptions

Pin No.	Mnemonic	Description
1,3	RFIN1, RFIN2	RF Input: Requires a DC blocking capacitor. Use a 10 nF capacitor for normal operation.
10, 12	RFOUT1, RFOUT2	RF Output and Bias: DC bias is provided to this pin through an inductor. A 470 nH inductor is recommended for normal operation. RF path requires a DC blocking capacitor. Use a 10 nF capacitor for normal operation.
$\begin{aligned} & 5,6,7,8 \\ & 13,14,15,16 \end{aligned}$	GND	Ground. Connect this pin to a low impedance ground plane.
2, 4	NC	No Connect.
9,11	CLIN1, CLIN2	A 1 nF capacitor connected between 9 and ground an Pin11 and ground provides decoupling for the on board linearizer.
	Exposed Paddle	Internally connected to GND. Solder to a low impedance ground plane

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3 ADL5534 Gain, Noise Figure, OIP3 and P1dB vs Frequency

Figure 4 ADL5534 OIP3 vs Pout and Frequency

Figure 5 ADL5534 Input / Output Return Loss and Reverse Isolation vs Frequency

Preliminary Technical Data

EVALUATION BOARD

Figure 6 shows the schematic for the ADL5531 evaluation board. The board is powered by a single 5 V supply. The components used on the board are listed in. Table 4Applying 5V to Vpos will bias the amplifier corresponding to RFIN1 RFOUT2. Applying 5 V toVpos1 will bias the amplifier
corresponding to RFIN2 - RFOUT2 To bias both amplifiers from a single supply, connect 5 V to Vpos or Vpos1 and attach a jumper across W3

Figure 6. Evaluation Board Schematic

Table 4. Evaluation Board Configuration Options

Component	Function	Default Value
C1, C2, C3, C4	AC-coupling capacitors.	10 nF 0402
C5, C6	Provides decoupling for the on board linearizer.	1 nF 0603
R1, R2, R3, R4, R5,	Optional components used for Configuring ADL5534 as a balanced amplifier.	Open 0603
R6, R7 R8		
T1, T2	T1 and T2 are 50Ω t 0100Ω impedance transformers used to configure the ADL5534	
	as a balanced amplifier. T1 and T2 are used to present a 100Ω differential impedance	MiniCircuits ADT2-1T-1P Open
C11, C12, C13, C14,	Optional components used for Configuring ADL5534 as a balanced amplifier.	C11-C14: Open 0402
C15, C16		C15,C16: Open 0402
C9, C10	Power Supply decoupling capacitors capacitor.	1 uF 0603
C7, C8	Power Supply decoupling capacitors capacitor.	10 nF 0603
L1, L2	DC bias inductor.	470 nH 1008CS
VCC \& GND	Clip-on terminals for power supply.	VCC Red
W1,W2		GND Black
W3	2-pin jumper for connection of ground and supply via cable.	

Figure 7. Evaluation Board Layout (Top)

Figure 8. Evaluation Board Layout (Bottom)

OUTLINE DIMENSIONS

Figure 9. 16-Lead Lead Frame Chip Scale Package [LFCSP_VQ] $4 m m \times 4 \mathrm{~mm}$ Body, Very Thin, Quad Lead

$$
C P-16-13
$$

Dimensions shown in millimeters

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option	Branding	Ordering Quantity
ADL5534ACPZ-R7 ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 -Lead LFCSP Tape and Reel	$\mathrm{CP}-16-13$		
ADL5534ACPZ-WP ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 -Lead LFCSP Waffle Pack	$\mathrm{CP}-16-13$		
ADL5534-EVALZ		Evaluation Board			

${ }^{1} \mathrm{Z}=\mathrm{Pb}$-free part.

[^0]: Rev. PrD 5/07
 Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

